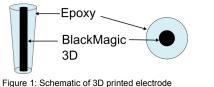


Voltammetric pH sensing with 3D-printed graphene/poly(lactic acid) electrodes Fakher Rabboh and Glen O'Neil

Montclair State University, Department of Chemistry and Biochemistry, Montclair, NJ 07043

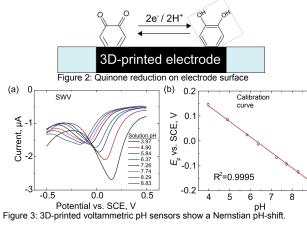
Introduction

- Monitoring astronaut health over long-duration space missions is a major challenge
 - Long travel times
 - Limited mass/power demands
 - Unexpected challenges
- 3D-printing is a technology that allows us to make customizable electrochemical sensing and energy storage devices in silico^[1]
- We can develop devices on earth and then fabricate them at the point of use^[2]
- Here, we developed voltammetric 3D-printed sensors for monitoring pH in complex biological fluids and consumables^[3]



Methods

- Fabricated 3D printed electrode using graphene/PLA filament epoxied in a pipette tip
- Performed 3 step pretreatment on electrode
- Collected pH measurements in carmody buffers using square wave voltammetry (SWV)

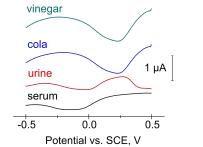


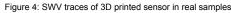
Activating Functional Groups

- We used four electrochemical pre-treatments to activate surfaces for voltammetric pH-sensing
 - 1. Polished electrodes using alumina slurries
 - 2. Applied +1.4 and -1.0 V in 0.5 M NaOH
 - 3. Polarized galvanostatically in 2 M $\rm H_2SO_4$ and 1 M $\rm KNO_3$
 - 4. Conditioned 1000 SWV cycles in a 4 pH buffer

pH calibration in buffer

- The peaks in SWV are indicative of redox processes or concentration of active species
- A linear plot was derived by performing SWV on buffers ranging from 3.97 to 8.83 pH (figure 4)


Acknowledgements


9

We thank the New Jersey Space Grant Consortium for financial support. GDO thanks MSU for generous startup funds.

pH measurements in complex samples

- Applicability was tested by performing SWV in undiluted complex samples
 - $\circ~$ Clear and well-defined peaks were observed

- The sensor was compared to a commercial glass electrode
 - Strong reproducibility and accuracy

Table 1: Comparison of commercial glass pH electrode and 3D printed electrode

Sample	pH (glass)	pH (blackmagic)	% error
Vinegar	2.47(±0.04)	2.52(±0.07)	2
Soda	2.51(±0.10)	2.56(±0.08)	1.8
Urine	6.65(±0.02)	6.44(±0.04)	3.2
Horse Serum	7.26(±0.04)	7.56(±0.09)	4.1

References

G.D. O'Neil, S. Ahmed, K. Halloran, J.N. Janusz, A. Rodríguez, I.M. Terrero Rodríguez, *Electrochem. Comm.* 2019, *99*, 56-60.
G.D. O'Neil, *Curr. Opin. Electrochem.* 2020, *20*, 60-65.
F. Rabboh, G.D. O'Neil, m prep.