
The apparatus is a pendulum that uses a motor and oscillating arm to
generate motion in the system. The pendulum is connected to two springs
on either side of it (Figure 2); the length of the springs can be adjusted to
help generate chaotic motion.
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Figure 2 shows the PASCO interface (a) and laptop computer (b) needed
to operate in using the PASCO program; the pendulum and rotary motion
sensor is (c). Figure 3 shows the offset weight (d) of the pendulum
attached to a disk plate covered in Velcro (e) which is free to rotate at its
center. The disc plate is covered in Velcro to make the placement of
Velcro-covered magnets (f) easier. Another magnet is attached to the
rotary motion sensor in the back of the disc (not visible in figure). In
Figure 4 the mechanical oscillator (g), photogate (h) and one of the spring
(i) are shown.

The movable Velcro-covered magnet was used in the apparatus to
provide a perturbing force which would cause the motion of the pendulum
to develop chaotic or nonchaotic motion. The interaction between the
movable Velcro-covered magnet and the fixed magnet (on the rotary
motion sensor) causes this perturbing force. The initial conditions of the
apparatus was also adjusted by changing the length of the springs and
the amplitude and frequency of oscillation. Chaotic behavior was
observed when the magnet was placed on the disk at the furthest point
from the weight. This allowed the pendulum to move faster and rotate
more than 360 degrees.

Using the PASCO Capstone computer program data was collected; the
displacement angle was plotted versus the corresponding angular
velocity. This phase plot is shown in Figure 5. In chaotic motion the phase
plot is filled in and motion does not repeat itself.

Figure 6 is the Poincaré plot corresponding to the phase plot shown in
Figure 5. Notice that there is an underlying pattern in the Poincaré plot
even when there is chaotic motion present.
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In order to study chaos theory a mechanical system was made to
demonstrate the phenomenon. The mechanical system is driven by
an oscillator and includes varying lengths of springs and masses.
Photogates and rotary motion sensors are used for the collection of
data from the mechanical system. Phase plots and Poincaré
diagrams were created using the program Mathematica.

Chaos theory was first observed by meteorologist Edward Lorenz
in 1961 while creating a predictive model of a weather event. He
changed the precision of the model to include another decimal
place; this caused the model to change drastically and led him to
the formulation of the phenomenon. The phenomenon was first
called chaos theory in 1963; it is defined as the dramatic difference
in long term end states resulting from a slight change in the initial
conditions of a system.

One of the best ways to evaluate whether a system is chaotic or
not is to use a phase plot. A phase plot is a representation of the
trajectories of a dynamic system in motion. The displacement is
plotted against its derivative with respect to time (velocity). If the
data is spread out over the entire graph, chaotic motion is present.

The plot used in our experiment graphs the angle (in radians) vs
the angular velocity (in radians/second) to produce the phase plot.

Figure 1: Phase plot of experimental data (77,530 data points
taken over a 60 minute time period) with driving frequency 3.56 Hz,
and driving amplitude 3.86 cm. Chaotic behavior is seen on the plot
as a spreading out of data over the entire range of the plot.

Another useful tool to observe chaos is the Poincaré plot. A
Poincaré plot is a two-dimensional graph that displays the time-
based dynamic behavior of a system. Poincaré plots are subsets of
phase plots and use data points that are sampled at a set time
interval. Using a Poincaré plot, order within chaos can be seen.
Poincaré plots are used often in chaotic systems to find attractors
(places in which the system will be found more often in).
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Non-chaotic motion in our system looks very different from chaotic
motion on a phase plot. For non-chaotic motion the pendulum
repeats itself in a predictable pattern (Figure 7). For most of the
data sets the system displayed periodic motion; the amplitude and
frequency of oscillation.

Figure 7: Phase plot showing the pendulum undergoing periodic
motion.
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Experimental Apparatus

In this project we were able to generate chaotic motion in a
pendulum system. We were able to demonstrate that small
perturbations were able to cause the system to go from periodic
motion to chaotic motion. We were able to construct Poincaré
plots that demonstrated attractors in our system. Future work that
can be explored on this topic is the modelling of differential
equations, approximating the solutions using numerical methods,
plotting the answers, and comparing them to the experimental
plots.

Experimental Results
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