

Abstract

Simulations of laser ablation on an aluminum lattice in a. vacuum are created using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and its ttm/mod fix.Single pulsed laser ablation with nanosecond and femtosecond lasers were simulated and the ablation behavior between the two were compared. The ablation threshold on the order of .1J/cm² was successfully reproduced in the simulations and cold ablation was observed. On the nanosecond laser, the lattice maintained its structure and no ablation was observed at its reported threshold of 5.2 J/cm², suggesting hot ablation to be the dominating process on the nanosecond pulse duration regime.

Background

Laser ablation is a process by which one removes material from the surface of a solid by irradiating it with a laser beam. By using a pulsed laser beam, as opposed to a continuous laser beam, we can produce the peak power needed to irradiate the material.

Cold ablation is a process where the full energy of the laser pulse is deposited to the electrons before the electrons can relax and equilibrate with the lattice, thus a large amount of energy is transferred to the lattice suddenly, causing an explosion. Hot ablation occurs when the pulse duration is less than the relaxation time and so the electrons can equilibrate with the lattice, causing heating and thus leading to vaporization. Theoretical works into laser ablation involve the two-temperature model (TTM) which describes non-equilibrated states of the electronic and lattice subsystems. The energy transport between the systems is described by a modified heat diffusion equation :

$$\begin{split} & \text{Equation 1. Generic TTM Model} \\ & C_e(T_e)\frac{\partial T_e}{\partial t} = \nabla \big[K_e(T_e,T_l) \ \nabla \ T_e\big] - G(T_e)(T_e-T_l) + S(\vec{r},t). \end{split}$$

 $C_{\rm e}$ is the electronic heat capacity, $K_{\rm e}$ is the electronic thermal conductivity, G is the electron-phonon coupling factor, S is an added source term describing energy deposited by the laser pulse, and $T_{\rm e}$ is the electronic temperature.

Single Pulsed Laser Ablation Simulations of Femtosecond and Nanosecond Lasers on an Aluminum lattice in a Vacuum

Shivam Patel¹, Jonathan Shi², Stephen Tse^{*2}

¹Department of Physics ²Department of Mechanical and Aerospace Engineering

Methods and Computational Setup

lattice. The energy transfer between electronic and lattice subsystems are described by the following TTM: In order to to simulate laser ablation, the ttm/mod fix in LAMMPS was used to implement an electronic subsystem modeled as a "gas" on a grid overlaying the

Equation 2. LAMMPS TTM Model $\frac{\partial T_e}{\partial t} = \bigtriangledown (\kappa_e \bigtriangledown T_e) - g_p(T_e - T_a) + g_s T_a^j + \theta(x - x_{surface}) I_0 \exp(-x/l_{skin})$

 $C_e \rho_e$

intensity and l_{skn} is the skin depth which is dependent on the wavelength of the laser. For the Al lattice, C_e was taken to be linear with T_e with a Sommerfeld coefficient of 135 J/m³K². The electronic thermal diffusivity, from which the conductivity is calculated, is taken to be 2 cm²/s which is typical of most metals. electron-stopping are negligible in laser ablation simulations. The last term describes the laser pulse, which travels in the +x direction. Io is the absorbed laser The coupling factor g_p is taken to be $3.1*10^{17}$ W/m³K. From the following equation: The new variable introduced in this version of the TTM are g_y , which is the electron-stopping coupling factor. This was set to 0 since the effects of

Equation 3. Relaxation Time $au_{ m p}=3nk_{ m B}/g_{ m p}$

and B was taken to be .274. The electron-phonon relaxation time was calculated to be around 8 ps. The mean free path was taken to be 18.9 nm. The electronic pressure is $P_e = B^*C_e^*T_e^*$

630 nm wavelength, and an absorbed fluence of .1 and .01 J/cm². The nanosecond laser had 5 ns pulse duration, 1064 nm wavelength, and an absorbed ran, two of which were done with a femtosecond laser and one being a nanosecond laser. The femtosecond laser had parameters of 100 fs pulse duration, equilibrated at 300K under a NVT ensemble then placed in an NVE ensemble right before the ttm/mod was implemented. Three finalized simulations were A 100 by 80 by 80 Angstrom(A) simulation box was constructed with a 60 by 80 by 80 A Al lattice in the middle and a 3 by 3 by 3 electron grid. The lattice was fluence of 5.2 J/cm² Discussion

In , Zhibn, Loodi V, Zhiglel, and Vittorio Cell. "Electron-phonon coupling and electron hait capacity of metals under conditions of storing electron-phonon nonequilibrium". *Physical Re* 8 / 777, 2008), 007513.

Duffy, D. M., and A. M. Rutherbord. "Including the effects of electronic stopping and electron-ion interactions in radiation damage simulators". Journal of Physics: Condensed Matter 19: 1 (2006): 016207.

Pomeaia, Cristian, and David A. Wills. "Observation of nanosecond tase-induced phase explosion in aluminum" Applied physics letters 88 21 (2006): 21112 Le Dorgoff, B., et al. "Ablation of aluminum thin films by ultrachort taser pulses." *Journal of Applied Physics* 88, 12 (2001): 8247-8252.

RUTGERS

I'd like to thank Jonathan Shi and Stephen Tse for giving me the opportunity to conduct this research project and for their guidance along the way in these stressful times. I am very grateful to them. ablation depth executed and more features can be examined such as computing power, a more in depth simulation can be engage in hot ablation. In the future with more single pulse and multiple pulses would be needed to data suggests ablation would not have occured in a not be simulated due to computational constraints, the were at around 1900 K. Although the full pulse could 10 ps after the start of the pulse, while the electrons lattice continued to heat up and average around 1100 K simulation, no ablation behavior was observed and the process in laser ablation. On the nanosecond laser non-equilibrated, implying cold ablation is the dominant ablation occurred while the lattice and electrons experimental data for the ablation threshold of Al. The .1 J/cm² however, ablation was observed, veritying At a fluence of .01 J/cm², no ablation was observed. At

Acknowledgements