3D Printed Hydrodynamic Electrochemical Devices for Homeostasis monitoring

Edgar Manriquez, Robert Clark Jr., Steven Douglass, Elizabeth Peebles, Sebastian Quinn, Dr. Glen O’Neil
Montclair State University, Department of Chemistry, Montclair NJ, 07043

INTRODUCTION

• 3D printing is a layer-by-layer fabrication method used for producing functional devices, sensors, and labware[1]
• We recently introduced a method for fabricating hydrodynamic electrochemical cells in a single step with multi-material 3D printing[2]
• 3D printing is advantageous for astronaut health monitoring because it allows a ground-based team to design, test, and verify sensors and devices, send the digital design file to a crew in space, where the device can be fabricated in situ with a 3D-printer[3]
• The goal of this work is to design, fabricate, and evaluate in 0.5 M H$_2$SO$_4$ natural PLA (body) and conductive PLA (electrodes)

METHODS

• Devices were designed according to the schematic above.
• All devices were printed on an Ultimaker S3 using digital design file to a crew in space, where the device can be fabricated in situ with a 3D-printer.
• Devices were modified using platinum catalysts and evaluated in 0.5 M H$_2$SO$_4$

IMPACT OF CHANNEL WIDTH ON PERFORMANCE

• Impact of channel geometry was evaluated using cyclic voltammetry in 0.5 M H$_2$SO$_4$
• Cathode reaction: 2H$^+$ (aq) + 2e$^-$ \rightarrow H$_2$(g)
• Anode reaction: H$_2$O(l) \rightarrow $\frac{1}{2}$O$_2$(g) + 2H$^+$ (aq) + 2e$^-$
• Overall reaction: H$_2$O(l) \rightarrow H$_2$(g) + $\frac{1}{2}$O$_2$(g)

• We used the measured current at 2 V as a proxy for amount of H$_2$ and O$_2$ produced.
• Larger current = most H$_2$ and O$_2$ produced
• In all cases, deposition of Pt catalysts demonstrated increased activity (shown as the blue trace versus the orange trace). This highlights the need for post-fabrication modification of the electrodes.
• For each channel height, the 4 mm channel had the largest current, followed by the 6 mm width, the 2 mm width.
• We expected the 2 mm device to have the highest current because is has the lowest solution resistance. We hypothesize that gas crossover in the 2 mm wide channels lowered the device efficiency.
• The best performing device was the 5 mm (height) x 4 mm (width)

REFERENCES

PRELIMINARY GAS COLLECTION MEASUREMENTS

• Gas collection measurements were performed by running the device outlets into sealed, calibrated gas collection tubes.
• Volume of each gas could be measured and compared to predicted values based on reaction stoichiometry.
• Preliminary measurements showed a ~2:1 ratio of H$_2$ to O$_2$ as predicted by the overall reaction.

CONCLUSIONS AND FUTURE WORK

• Here we demonstrated that a 3D printed device can be used to perform the electrolysisis of H$_2$ and O$_2$.
• When adjusting parameters we found that the efficiency of the device changed. Further testing will allow us to find the best parameter settings.
• Initial gas collection measurements showed a ~2:1 ratio of H$_2$ to O$_2$. Once gas can be collected faradaic efficiency can be calculated.
• Future work will require more robust gas collection measurements, analysis of product crossover using GC, and measurement of Faradaic efficiency.
• Use of more efficient catalysts for the oxygen evolution reaction – e.g., IrO$_2$ or RuO$_2$

ACKNOWLEDGEMENTS

• The NASA New Jersey Space Grant Consortium Summer Internships Program
• PSEG ISS Green Teams program at Montclair State University for additional support.